
ARDI: Automatic Generation of RDFS Models
from Heterogeneous Data Sources

Shumet Tadesse∗, Cristina Gómez∗, Oscar Romero∗, Katja Hose†, and Kashif Rabbani∗
∗ Dept. of Service and Information System Engineering

Universitat Politecnica de Catalunya, BarcelonaTech Barcelona, Spain
{shumet, cristina, oromero, krabbani}@essi.upc.edu

†Department of Computer Science
Aalborg University, Aalborg, Denmark

khose@cs.aau.dk

Abstract—The current wealth of information, typically known
as Big Data, generates a large amount of available data for
organisations. Data Integration provides foundations to query
disparate data sources as if they were integrated into a single
source. However, current data integration tools are far from
being useful for most organisations due to the heterogeneous
nature of data sources, which represents a challenge for current
frameworks. To enable data integration of highly heterogeneous
and disparate data sources, this paper proposes a method to
extract the schema from semi-structured (such as JSON and
XML) and structured (such as relational) data sources, and
generate an equivalent RDFS representation. The output of
our method complements current frameworks and reduces the
manual workload required to represent the input data sources

implementing our approach has been developed.
Index Terms—Data Model Translation, Data Integration, RDF

Schema, Meta-modeling

I. INTRODUCTION

In today’s digital world, data, so-called Big Data, are one
of the organizations most important strategic assets. Orga-
nizations envisage this asset to achieve business success by
improving client experience, improving working procedures,
and increasing efficiency. On the one hand, most organizations
use agility as an important business strategy to deliver better
services [33]. Relevant data sources for these organizations
reside uncoordinated across different departments or even in
external sources. As a result, organizations must be able to
integrate their data to drive their business from such frag-
mented data. For example, interaction data that is massively
generated from Social Networks (such as Twitter, Facebook)
can be integrated with organizational data to get an enhanced
view of their product diffusion.

Big Data is mainly characterized by volume, variety and
velocity [1], [19]. The size of data can range from terabytes
to zettabytes or beyond and data may be produced in different
formats, i.e., structured, semi-structured or unstructured. Big
Data sources typically come in terms of schemaless data
models such as XML or JSON (e.g., API calls, document-
stores such as MongoDB, etc.). It is also essential to include
the available organizational data, typically stored in a relational

database. The relational model is a structured data model
that facilitates the translation to other languages (i.e., every
relational database contains a catalog with the necessary
structural meta-data or, in database terms, the schema infor-
mation). However, for schemaless data formats (e.g., JSON
or XML) there is typically no such available meta-data (e.g.,
MongoDB, CouchDB or ElasticSearch do not either support
JSON schema or real databases do not use this feature). Such
characteristics represent a challenge for users to get the desired
data potentially spanning multiple independent data sources.
As identified by the Sloan Review Group1, the current focus
of Big Data is dealing with data integration in such settings.

Data integration is a well-studied field that provides unified
access to disparate data sources by means of a unified view
expressed in terms of a canonical model [14]. However, it is
well-known that traditional data integration techniques cannot
be used as-is for Big Data Integration [13]. The main steps
during data integration are: expressing each data source in
terms of the chosen canonical data model, creating a single
unified view of the sources (also known as integration or target
schema) and mapping the data sources to the target schema.
Here we focus on the very first step towards integrating
heterogeneous data sources (i.e. choosing a canonical data
model and translating the scheme of data sources into the
chosen canonical data model). In this scenario, the Semantic
Web (SW) data models become a key technology for data
standardization and conceptualization. As stated in [10], recent
trends show that data from different sources are migrated
to semantic technologies to facilitate data integration. For
example, ontology-based frameworks for data integration like
[5] and [25] involve the use of SW data models such as
RDF/RDFS or OWL to combine heterogeneous data sources
effectively.

From the viewpoint of modeling, and unlike OWL, RDF
Schema (RDFS) is capable of expressing resources in a
structured way separated into three layers (i.e., instance, model
and meta-model). Such modeling is achieved through rdf:type,
a property used to distinguish instances from classes. Other
properties, such as rdfs:domain and rdfs:range allow to express

1http://bit.ly/TheVarietyChallenge

in terms of the integration canonical data model. Our approach
proposes a set of production rules at the meta-model level to
ensure that the model translations are correct. Finally, a tool for

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/EDOC.2019.00031

additional constraints at the model level. Meta-modeling is
used in software engineering to construct models of models
[18], which has been vastly overlooked in other fields. The use
of MDA (Model Driven Architecture) principles in the devel-
opment of SW ontologies is both desirable and promising [11].
It enhances agility in the development of SW applications. To
promote the best practices of MDA approaches in the SW
community, Object Management Group (OMG) [27] provides
detailed specifications for RDFS and OWL metamodels.

In order to enable meta-modeling, we choose RDFS as
a canonical data model, since we argue that meta-modeling
can be the solution for Big Data Integration. A significant
advantage of meta-modeling is the capability of supporting
different abstraction levels. It helps to maximize the extent to
which data can be integrated by separately expressing meta-
schema, schema information and the data itself. In addition,
it ensures semantic interoperability. From a technical point of
view, meta-modeling approaches help to minimize develop-
ment time and maximize efficiency and productivity [7].

In this paper, we present a generic approach that overcomes
the limitations of the current state of the art for extracting and
representing disparate data sources in terms of the canonical
data model. As such, this paper fosters the use of meta-
modeling in automating the steps of translating heteroge-
neous data sources to a common data model. Our approach
not only automates the extraction and translation of source
schemas to RDFS (the integration canonical data model), but
it is the first approach providing foundations to generate
valid models (i.e., meta-schema2

following:
•

•

• A prototype tool, named ARDI (Automatic Generation
of RDFS Models from Heterogeneous Sources for Data
Integration), that generates an equivalent RDFS model
from a given JSON, XML or RDB input.

The rest of this paper is structured as follows. Section II
discusses related work. Section III illustrates how a meta-
modeling approach can be used for translating disparate data
sources to the canonical model. In Section IV, we provide a
proof of concept using a prototype and outline its implemen-
tation. Section V concludes the paper.

II. RELATED WORK

Ontology-based data integration systems are currently a
trend for Big Data [6], [25]. However, these systems require
huge manual efforts to generate the required constructs (i.e.,

2In this paper we use the terms meta-schema and meta-model interchangeably.

mappings and target ontology). As a consequence, these sys-
tems are barely used by organizations due to their inherent
complexities and required expertise. To the best of our knowl-
edge, [31] and [17] are the only attempts to automate the
creation of such constructs in the Big Data field. However,
the approach in [31] presents a methodology, following a
traditional requirement elicitation process based on the sources
at hand and the approach that is employed in [17] is limited to
RDB. As a consequence, the amount of manual work is still
huge. For this reason, there are several works claiming for new
solutions supporting the automation of data integration [15],
[30].

Nevertheless, there are some efforts in ontology construc-
tion, mainly in the SW field, that can help in producing such
constructs and relate to our work. In short, one may develop
ontologies (and the associated mappings) manually or process
existing data sources to generate them automatically. When
it comes to data integration, the former is time consuming
task that renders unfeasible for large systems [35] whereas
the latter is a low-cost and efficient method.

In the literature, a number of researchers have recognized
the importance of SW data modeling frameworks and have
proposed different approaches for the migration of (semi-
)structured data sources to the SW. These approaches can
generally be classified as instance-level [2], [9], [20], [29]
and schema-level [3], [12], [23], [34] translations. Instance-
level approaches aim at generating a semantic representation
of the data (instances) without generating schema information.
Several frameworks (D2RQ [4], R2RML [8], RML [9], X3ML
[21]) exist to let end-users express rules to translate instances
from any kind of source to SW models. However, it is up to

Opposite to instance-level approaches, schema-level ap-
proaches do not translate data but just schema information
(e.g., relational schema to OWL [23], UML class diagrams to
OWL [12], UML class diagrams to RDFS [34]). In [23], the
authors introduced philosophical principles that directly map
RDB schema elements into OWL TBOX representations. They
have also used these principles to evaluate the performance
of existing tools for the automatic conversion of RDB to
ontologies. [12] proposed a mathematical framework based on
schema mappings to convert UML class diagrams to OWL.
In this study, a model-to-text transformation was used to
generate the textual representation of class diagrams from the
source schema. Then, they proposed mapping rules between
UML class diagram elements and OWL constructs. They also
claim that the source schema representations and the target
schema were validated, but no validation proof is provided.
In [34] authors introduced a method to produce RDF schema
from UML class diagrams. They also introduced a tool for
implementing their approach. However, their input file needs to
be XML-coded, which hinders the flexibility of their approach.

compliant schemas). In this
way, our approach uses a set of production rules to generate
such translations. The main contributions of this paper are the

An approach that uses formalized meta-models and a set
of production rules to translate disparate data sources to
RDFS.
As representative cases of Big Data sources, we consider
our method for JSON, XML and relational databases
(RDB). In this paper, we exemplify our approach with
JSON.

the system designer to come up with such rules. In this regard,
JSON-LD [32] is a viable option for the direct translation of
JSON documents to the SW.

All in all, although the aforementioned approaches con-
tribute to translating schema information to SW models, they

III. APPROACH

Modeling languages have played an essential role in orga-
nizing information in the SW. RDFS is a primitive ontology
language that allows meta-modeling. In this section, we ex-
plain how to generate RDFS representations from different
input data sources.

data source that conforms to the source meta-model. The
translation process uses a set of pre-defined production rules
(that must be defined beforehand) to automatically translate
the extracted source schemas to an equivalent RDFS model
based on both the source and RDFS meta-model constructs.
The overall process is depicted in Fig. 1 (presented as a BPMN
diagram to show the flow of activities) and the detail of each
process is discussed in the following subsections.

When presenting our method in the subsequent sections,
we use JSON as an exemplary use case. Specifically, JSON
documents from the Barcelona city hall providing information
about public transports in the city (see a fragment in Fig. 2).

Fig. 1: Overall process for translating data sources to RDFS

3In case of interest, more detailed information can be found on: http:
//www.essi.upc.edu/dtim/ardi

{
‘‘id”:1,
‘‘type”:”BIKE”,
‘‘address”:{
‘‘streetName”:‘‘Gran Via Corts Catalanes”,
‘‘streetNumber”:760},
‘‘coordinates”:[41.397952,2.180042],
‘‘nearbyStations”:[{
‘‘id”:24,
‘‘type”:‘‘Metro”,
‘‘distance”:500},{
‘‘id”:426,
‘‘type”:‘‘Bus”,
‘‘distance”:367}]

}

Fig. 2: Running example (excerpt of the stations.json file)

A. Extraction of schemas from data sources

Semi-structured data sources are known to be schemaless
(i.e., without a fixed schema for all instances). However, there
is always an implicit schema. At this stage, our approach
elicits the implicit schema4. This process takes sample data
source files and the source meta-model as input and produces
a meta-model compliant data source schema. Our approach
relies on linguistic meta-modeling to ensure the correctness
of the resulting schema. Accordingly, it reads the data source
files and parses them according to the meta-schema. Thus, the
source meta-model is used to constrain the extracted schema
elements.

First, if not done yet, for each data model we must create a
representation of its meta-model in First Order Logic (FOL).
For our running example, we generated the JSON meta-
schema depicted in Fig. 3 (represented as a UML class dia-
gram to facilitate its comprehension). There, a JSON document
is represented as a Document, JSON object as ObjectClass,
JSON pairs (key/value) as Attribute and ValueType. Simple
value types such as string, boolean and date are represented
as Primitive, and complex values as Array or Reference. The
JSON schema meta-model describes the basic constructs and
the relationships between them. As can be seen, a document
consists of an object class, and an object class may have a set
of attributes. Each attribute has a string name and a value
type which can be a primitive, an array or a reference to
an object class. An array can consist of either a primitive
type, a reference or another array. Finally, a reference type is
composed of an object class.

We next formalize, in FOL, the general knowledge pre-
sented in the meta-model. More specifically, we are interested
in expressing the meta-model facts (i.e., entities and rela-
tionship types). In FOL, we represent entities by constants,
facts as ground formulas (i.e., formulas without variables),
and predicates are used to denote properties of entities and
relationships among them. Predicates have an associated arity
(i.e., number of arguments), which might be one or some other
finite value. An abstract description that represents entities,
relationships among them and categorization between them is

4Note that for structured data sources, such as RDB, this step can be skipped.

3

(i) do not guarantee to produce sound meta-model com-
pliant schemas, (ii) do not fully cover all schema elements
that we may find in semi-structured data models (e.g.,
arrays in JSON), and (iii) ignore the RDFS meta-model.
As a conclusion, the models generated lack a common under-
standing, since models are generated without fixed semantics.
Thus, we propose a solution to these problems based on a
meta-modeling approach.

In order to extract an RDFS representation from an input
data source, we rely on two main processes, namely extract
the schema (potential schemas of sample source files) and
translate them to RDFS. The extract source schema process
is responsible for the generation of a schema from an input

We have also demonstrated our approach for XML and RDB

called information base [26]. For example, for the running
example, the information base contains:

Fig. 3: JSON Schema Meta-model (inspired in [16])

• ObjectClass(o) representing that the constant o is an
ObjectClass;

• Attribute(a) representing that the constant a is an At-
tribute;

• ObjectClassName(o, stations) representing that the object
class o has name stations;

• AttributeName(a,streetName) representing that the at-
tribute a has the name streetName;

• HasAttribute(o,a) representing that the object class o has
the attribute a. That is, the object class with the name
stations has the attribute with the name streetName.

The extracted schema does not only need to conform to the
source meta-model but also satisfy its constraints. Thus, the
JSON meta-schema defines some constraints that need to be
satisfied by JSON schemas. Specifically, these constraints are
constraints on generalizations, referential integrity constraints,
cardinality constraints, and key constraints. Constraints on
generalizations define the IsA relationships, the disjointness
and covering constraints in the JSON meta-schema. Referen-
tial integrity constraints guarantee that each participant entity

Once the meta-schema has been formalized in FOL (this
is a manual task to be done once per data model), we parse
representative instances according to the meta-model in order
to extract the implicit schema. For example, consider the
generation of a JSON schema shown in Fig. 2. By means
of its syntactic rules, we would identify the document, object
classes, attributes, etc.

Note that this parsing process may be triggered once for
several sample documents. For example, if a MongoDB col-
lection stores 5 different types of JSON documents, the process
must be triggered for each document and, as a result, we will
generate 5 different meta-model compliant schemas describing
each of the input documents. The integration of these schemas
into one should be done in subsequent steps not covered in
this paper. In the next section we refer to the process triggered
for each generated schema.

B. Translation from extracted source schema to RDFS

The next step is to translate the schema of the input data
source to RDFS. For each output of the previous process,

we execute this step once. We require the RDFS meta-model
as input (see Fig. 4)5. Also, this process relies on a set of
production rules that define the translation from the schema
of the input data source to equivalent RDFS representation.

Fig. 4: RDF Schema Meta-model (extracted from [28])

Basically, the translation step is the application of a set
of rules. Using a production rule, we can map the source
meta-model constructs to the target (i.e., RDFS) meta-model
constructs. Each production rule is represented as a logical
axiom with left-hand side (LHS) and right-hand side (RHS),
denoted by LHS ⇒ RHS. Thus, if LHS holds RHS must
hold too. Each logical axiom consists of either unary or
binary predicates representing the knowledge from source and
target meta-models. For example, the following is a production
rule that translates each instance of JSON ObjectClass to
an RDFSClass instance with a new IRI derived from the
ObjectClassName:
ObjectClassName(o, oName) ⇒ RDFSClass(c) ∧
IRIForResources(c, i) ∧ iriString(i, fclass(oName))
where: o is an instance of ObjectClass and oName is a string

that identifies o. fclass(oName) is a function that generates
an IRI from the string oName.

Importantly, given an oName there is only one RDFSClass
with such IRI. Also, our production rules use the information
from both the source meta-model (e.g., JSON meta-model) and
the RDFS meta-model to guarantee that any valid (e.g., JSON)
model might be processed. Aligning the schema elements with
the meta-model constructs offers the following advantages:

• Conforming the source schema elements with the source
schema meta-model constructs enables us to preserve the
behavior of the source schema in the translation process.

• Further, conforming the translated elements with the
RDFS meta-model constructs will result in the RDFS
representations to be conformant with the RDFS meta-
model.

• Consequently, with respect to the advantages mentioned
above, the former aims at guaranteeing that our pro-

5The FOL representation can be found at: http://www.essi.upc.edu/dtim/ardi

of a relationship is an instance of its corresponding type. The
formalization of these constraints in FOL, including cardinality
and key constraints, is shown in Table I.

TABLE I: Logical representation of JSON meta-model constraints

Types of Constraint Logical Representation
∀v(V alueType(v)⇒ Reference(v) ∨ Primitive(v) ∨Array(v))
∀r(Reference(r)⇒ V alueType(r))
∀p(Primitive(p)⇒ V alueType(p))

Constraints on generalizations ∀y(Array(y)⇒ V alueType(y))
∀r(Reference(r)⇒ ¬Primitive(r))
∀r(Reference(r)⇒ ¬Array(r))
∀p(Primitive(p)⇒ ¬Array(p))
∀d, o(HasObjectClass(d, o)⇒ Document(d) ∧ObjectClass(o))
∀o, a(HasAttribute(o, a)⇒ ObjectClass(o) ∧Attribute(a))
∀a, v(HasTypeA(a, v)⇒ Attribute(a) ∧ V alueType(v))
∀r, o(ReferenceTo(r, o)⇒ Reference(r) ∧ObjectClass(o))
∀y, v(HasTypeR(y, v)⇒ Array(y) ∧ V alueType(v))

Referential integrity constraints ∀o,m(ObjectClassName(o,m)⇒ ObjectClass(o) ∧ String(m))
∀a,m(AttributeName(a,m)⇒ Attribute(a) ∧ String(m))
∀p,m(PrimitiveName(p,m)⇒ Primitive(p) ∧ String(m))
∀d(Document(d)⇒ ∃!o(HasObjectClass(d, o)))a

Cardinality constraints ∀o(ObjectClass(o)⇒ ∃≥1a(HasAttribute(o, a)))
∀a(Attribute(a)⇒ ∃!v(HasTypeA(a, v)))
∀r(Reference(r)⇒ ∃!o(ReferencesTo(r, o)))
∀y(Array(y)⇒ ∃!v(HasTypeR(y, v)))
∀o(ObjectClass(o)⇒ ∃!m(ObjectClassName(o,m)))
∀a(Attribute(a)⇒ ∃!m(AttributeName(a,m)))
∀p(Primitive(p)⇒ ∃!m(PrimitiveName(p,m)))
∀o1, o2(ObjectClassName(o1, o1Name) ∧ ObjectClassName(o2, o2Name) ∧ (o1 6= o2) ⇒
(o1Name 6= o2Name))
∀o, a1, a2(HasAttribute(o, a1)∧HasAttribute(o, a2)∧AttributeName(a1, a1Name)∧
AttributeName(a, a2Name)⇒ (a1Name 6= a2Name))

Key constraints ∀v(HasTypeA(a1, v) ∧HasTypeA(a2, v)⇒ (a1 6= a2))
∀p1, p2(PrimitiveName(p1, p1Name) ∧ PrimitiveName(p2, p2Name)⇒ (p1Name 6= p2Name))
∀o(HasAttribute(o, a1) ∧HasAttribute(o, a2)⇒ (a1 6= a2))
∀v(HasTypeR(y1, v) ∧HasTypeR(y2, v)⇒ (y1 6= y2))

aNote that ∃!yP (x, y) mean there is a unique y such that P (x, y) is true.

duction rules are semantically correct whereas the latter
refers to their syntactic correctness.

Finally, SW resources must always be identified by an
IRI. We provide a mechanism to automatically generate IRIs
for elements of the target semantic model. Thus, we define
auxiliary functions to be used by the production rules to
automatically generate IRIs for all the resources of the target
schema. Note that these functions can be reused for any other
data model talking in terms of objects, attributes, data types
and arrays (simply adapting them to the new meta-model).

Let us consider now our running example. For JSON, we
have defined 8 production rules. In this case, we only have one
strong element (i.e., object class) and R1 translates instances
of this element to an RDFS class. All the other rules translate
weak elements that require to translate other meta-model
elements first. We exemplify the the production rules for JSON
with R1, R2 and R3.

Rule 1: JSON ObjectClasses are translated to RDFS Classes
We create an RDFSClass to represent each JSON ObjectClass
instance. This rule gets all instances of ObjectClass from the
JSON meta-model using the predicate ObjectClassName, and
then it generates an instance of RDFSClass with an IRI derived
from the name of the object classes. Fig. 5 shows an example
of such translation for the object class with name stations (Fig.
2). Note that sc : is a prefix for www.BDIOntology.com/
schema/

Fig. 5: An example of RDFS class generation

Rule 2: JSON Attributes are translated to RDF Properties
R2 is a rule for a weak element (attributes), and therefore
it requires instances of JSON ObjectClasses to have already
been translated to RDFS (i.e., R1 is triggered first). For the
running example (Fig. 2), an instance of RDFProperty that can
be identified by an IRI generated from the object class name
(e.g., stations) and attribute name (e.g.,id, type) using the func-
tion fatt

6 (i.e., fatt(stations, id), fatt(stations, type)). The
domain of this property is an instance of RDFS class identified
by an IRI obtained using the function fclass(stations).

Fig. 6: An example of JSON Attribute to RDFProperty trans-
lation

6fatt is a function that returns an IRI from the strings objectName and attribute-
Name (i.e., fatt(oName, aName))

Rule 3: Range representation for Properties with Primitive
Type

Besides a domain, an instance of RDFProperty includes
a range that states the classes of its values. The range of
properties is obtained from the JSON attributes value types.
Since an attribute in JSON can have primitive, array or
reference value types, the transformation from value types to
range of properties is handled by different rules. Rule R3 is
used to translate the primitive value type of an attribute to
an instance of RDFDatatype. For example, Fig. 7 shows the
xsd:string RDFDatatype as the range of the property with the
IRI calculated from fatt(stations, type).

Fig. 7: An example of attribute value to property range
mapping

Rules R4, R5, R6, R7 and R8 have been defined for map-
ping arrays and reference types to the RDFS constructs.
More specifically, R4 translates references to RDFS class
that represents the range for properties and R5 translates
JSON arrays to an instance of both an RDFS class and RDF
sequence. While an array is translated to an instance of both
RDFS class and RDFS sequence, we define an instance of
container membership property whose domain is the RDFS
class and RDFS sequence created using R5, and its range
corresponds to the element of the given array. To this end,
rules R6, R7 and R8 addresses primitive, reference and array
of array elements, respectively. Detailed information can be
found at http://www.essi.upc.edu/dtim/ardi.

IV. PROTOTYPE

We created a tool named ARDI7 to implement our approach.
It follows the service-oriented architecture and implemented in
Java by making use of Jena [22] to translate source schemas
to RDFS triples. It accepts JSON, XML and RDB as input,
extracts the input data source schema and translates it to RDFS
using the previously presented translation rules. For RDB, it
connects to an existing database, reads the database schema
and translates it to RDFS.

We tested ARDI using Open Data repositories such as the
Barcelona city repository on public transport (see Section
III). Moreover, to further validate our production rules by
means of external tools we chose Protégé [24] to make sure
if the generated RDFS representation was interpreted by it.
All the RDFS models generated by ARDI were successfully
interpreted and visualised by Protégé. For example, Fig. 8
shows the graphical representation of the RDFS schema cor-
responding to the excerpt in Fig. 2.

7Available at: http://dtim.essi.upc.edu/shumet/ardi

RDFS

Class RDFSDomain RDFSProperty RDFSRange RDFSDataType

Fig. 8: An example of RDFS graph

V. CONCLUSION

Altogether, this is an important step towards Big Data
Integration. As identified in [13] there is a lack of tools to
automatically extract and integrate data from heterogeneous
sources. Our approach automates the first step by extracting a
common representation of the sources on a common canonical
data model. To the best of our knowledge, no other similar
approach/tool exists for a typically manual and error-prone
task. The automatic integration of heterogeneous data sources
requires several efforts. For the future, we plan to support the
next stages in data integration and develop an end-to-end semi-
automatic integration framework building on top of the results
generated by the approach presented in this paper.

ACKNOWLEDGMENTS

This work has been partly supported by the GENESIS
project, funded by the Spanish Ministerio de Ciencia e Inno-
vacin under project TIN2016-79269-R, and by the European
Commission through the Erasmus Mundus Joint Doctorate
Information Technologies for Business Intelligence-Doctoral
College (IT4BI-DC).

In this paper, we discuss the need of a meta-modeling
approach for the automatic translation of heterogeneous data
sources to semantic models. We specify the translation at the
meta-model level using a set of production rules between the
source and RDFS meta-models. Our approach is generic as to
consider any data source, and we explained how to formalize
the source data model and apply production rules to guarantee
a valid result. We have exemplified this process with JSON and
implemented a tool that does so for JSON, XML, and RDB.

REFERENCES

[1] Acharjya, D.P., Ahmed, K.: A survey on big data analytics: challenges,
open research issues and tools. Int. J. Adv. Comput. Sci. Appl 7(2),
1–11 (2016)

[2] Arenas, M., Bertails, A., Prudhommeaux, E., Sequeda, J.: A direct
mapping of relational data to rdf. W3C recommendation 27 (2012)

[3] Bakkas, J., Bahaj, M., Marzouk, A.: Direct migration method of rdb to
ontology while keeping semantics. IJCA 65(3) (2013)

[4] Bizer, C., Seaborne, A.: D2rq-treating non-rdf databases as virtual rdf
graphs. In: Proceedings of the 3rd ISWC, 2004. vol. 2004. Proceedings
of ISWC2004 (2004)

[5] Botoeva, E., Calvanese, D., Cogrel, B., Corman, J., Xiao, G.: A
generalized framework for ontology-based data access. In: AI*IA. pp.
166–180. Springer (2018)

[6] Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D.,
Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: Answering sparql
queries over relational databases. Semantic Web 8(3), 471–487 (2017)

[7] Chang, D.T., Kendall, E.: Metamodels for rdf schema and owl. In:
MDSW 2004, Monterey, USA (2004)

[8] Das, S., Sundara, S., Cyganiak, R.: R2rml: Rdb to rdf mapping lan-
guage.(2012) https://www. w3. org. Tech. rep., TR/r2rml

[9] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E.,
Van de Walle, R.: Rml: A generic language for integrated rdf mappings
of heterogeneous data. In: LDOW (2014)

[10] Dou, D., Wang, H., Liu, H.: Semantic data mining: A survey of ontology-
based approaches. In: ICSC. pp. 244–251. IEEE (2015)

[11] Gašević, D., Djurić, D., Devedžić, V.: Bridging mda and owl ontologies.
Journal of Web Engineering 4(2), 119–134 (2005)

[12] Gherabi, N., Bahaj, M.: A new method for mapping uml class into owl
ontology. SEDEXS pp. 5–9 (2012)

[13] Golshan, B., Halevy, A., Mihaila, G., Tan, W.C.: Data integration: After
the teenage years. In: SIGMOD-SIGACT-SIGAI. pp. 101–106. ACM
(2017)

[14] Halevy, A., Doan, A., Ives, Z.: Principles of data integration (2012)
[15] Halevy, A.Y.: Technical perspective: Building knowledge

bases from messy data. Commun. ACM 60(5), 92 (2017).
https://doi.org/10.1145/3060584, https://doi.org/10.1145/3060584

[16] Izquierdo, J.L.C., Cabot, J.: Discovering implicit schemas in json data.
In: ICWE. pp. 68–83. Springer (2013)

[17] Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel,
C., Skjæveland, M.G., Thorstensen, E., Mora, J.: Bootox: Practical
mapping of rdbs to owl 2. In: ISWC. pp. 113–132. Springer (2015)

[18] Kobryn, C.: Uml 2001: a standardization odyssey. Communications of
the ACM 42(10), 29–37 (1999)

[19] Laney, D.: 3d data management: Controlling data volume, velocity and
variety. META group research note 6(70), 1 (2001)

[20] Lefrançois, M., Zimmermann, A., Bakerally, N.: A sparql extension
for generating rdf from heterogeneous formats. In: ESWC. pp. 35–50.
Springer (2017)

[21] Marketakis, Y., Minadakis, N., Kondylakis, H., Konsolaki, K., Samar-
itakis, G., Theodoridou, M., Flouris, G., Doerr, M.: X3ml mapping
framework for information integration in cultural heritage and beyond.
IJDLS 18(4), 301–319 (2017)

[22] McBride, B.: Jena: A semantic web toolkit. IEEE Internet computing
6(6), 55–59 (2002)

[23] Mogotlane, K.D., Fonou-Dombeu, J.V.: Automatic conversion of rela-
tional databases into ontologies: A comparative analysis of protégé plug-
ins performances. arXiv preprint arXiv:1611.02816 (2016)

[24] Musen, M.A.: The protégé project: a look back and a look forward. AI
matters 1(4), 4–12 (2015)

[25] Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., Vansummeren, S.: An
integration-oriented ontology to govern evolution in big data ecosystems.
Information Systems 79, 3–19 (2019)

[26] Olivé, A.: Conceptual modeling of information systems. Springer Sci-
ence & Business Media (2007)

[27] OMG: Ontology Definition Metamodel. OMG Book (September), 338
[28] OMG: Ontology Definition Metamodel. OMG Book (September),

338 (2014), http://www-inf.it-sudparis.eu/SIMBAD/tools/SoSeC-BPO/
formal-14-09-02.pdf

[29] Santipantakis, G.M., Kotis, K.I., Vouros, G.A., Doulkeridis, C.: Rdf-gen:
Generating rdf from streaming and archival data. In: WIMS. p. 28. ACM
(2018)

[30] Sarma, A.D., Dong, X.L., Halevy, A.Y.: Uncertainty in data integration
and dataspace support platforms. In: Schema Matching and Mapping,
pp. 75–108. Springer (2011)

[31] Sequeda, J.F., Miranker, D.P.: A pay-as-you-go methodology for
ontology-based data access. IEEE Internet Computing 21(2), 92–96
(2017)

[32] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.:
Json-ld 1.0. W3C Recommendation 16, 41 (2014)

[33] Stonebraker, M., Ilyas, I.F.: Data integration: The current status and the
way forward. IEEE Data Eng. Bull. 41(2), 3–9 (2018)

[34] Tong, Q., Zhang, F., Cheng, J.: Construction of rdf (s) from uml class
diagrams. Journal of computing and information technology 22(4), 237–
250 (2014)

[35] Xu, Z., Ni, Y., He, W., Lin, L., Yan, Q.: Automatic extraction of owl
ontologies from uml class diagrams: a semantics-preserving approach.
World Wide Web 15(5-6), 517–545 (2012)

