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You can automatically convert 
your RDF graph to a property 

graph without losing any data or 
breaking any constraints!

A lossless, schema-aware, fully monotonic transformation called 
S3PG converts SHACL-constrained RDF data into property graphs, 
preserving every fact and constraint.

• How to map RDF triples — including mixed literal/resource values 
into a property graph data model without losing information?

• How to ensure complete query equivalence by carrying SHACL 
cardinalities, datatypes, and hierarchies over to PG-Schema?

• How to keep the target graph incrementally updated in a 
monotonic way, avoiding costly full reloads as the KG evolves?

Schema Transformation

Data Transformation

SHACL[7] 

RDF Graph
PG-Schema[8]

Property Graph

1. Angles, Renzo, Harsh Thakkar, and Dominik Tomaszuk. “RDF and Property Graphs Interoperability: Status and Issues” AMW (2019).
2. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “Mapping RDF Databases to Property Graph Databases” IEEE Access 8 (2020), 86091-86110.
3. Hirokazu Chiba, Ryota Yamanaka, and Shota Matsumoto. “G2GML: Graph to graph mapping language for bridging RDF and property graphs” ISWC (2020), 160-175.
4. E. Haihong, Penghao Han, and Meina Song. “Transforming RDF to Property Graph in Hugegraph” ICEMIS (2020), 1-6.
5. Davide Di Pierro, Stefano Ferilli, and Domenico Redavid. “LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends” Information 14(3), 154 (2023).
6. Neo4j. “neosemantics (n10s): Neo4j RDF & Semantics toolkit” https://neo4j.com/labs/neosemantics/
7. SHACL W3C Schema. https://www.w3.org/TR/shacl/
8. Angles, R., Bonifati, A., Dumbrava, S., Fletcher, G., Green, A., Hidders, J., ... & Zivkovic, D. “PG-Schema: Schemas for property graphs” SIGMOD (2023), 1-25.
9. Sequeda, Juan F., Marcelo Arenas, and Daniel P. Miranker. “On directly mapping relational databases to RDF and OWL” World Wide Web (2012), 649-658.
10. Kashif Rabbani, Matteo Lissandrini, Katja Hose. “Extraction of Validating Shapes from very large Knowledge Graphs” PVLDB (2023), 1023-1032. 

: bob

:GradStudent

:DB  

:GradCourse

:name

Bobstring

1994gYear :dob

05-05string

:dob

Algorithms string 

:takesCourse

:takesCourse

:Student:Person

a

a
a

:Coursea
a

Databasesstring

a = rdf:type ,             rdfs:subClassOf

Legend

:name

RDF Graph

BS12string

:regNo :Student
:regNo★ xsd:string [1..1]

:GradStudent

:Person

:name ★ xsd:string [1..1]
 :dob ★    xsd: gYear  | 
                xsd: string  | 

:Course
:name ★ xsd:string [1..1]

:GradCourse

:takesCourse⌾ [1.. *]:takesCourse★  xsd:string [1..*]

sh:node,  
  ★   sh:Literal, 

 ⌾  sh:IRI

Legend

SHACL Shapes Graph

Student

Grad
Student

Person

Course

Grad
Course

inheritanceLegend

name STRING

regNo STRING

name STRING
takesCourse

[1.. *]

YEARSTRING

dob
[1..1]

takesCourse

PG-Schema

S3PG: Schema 
Transformation

Person
        Student
        GS
name: ‘Bob’

   regNo: ‘BS12’
    iri : ‘…’

𝑠1:

Course
         GC
name: Databases

  iri : ‘…’

STRING

value: Algorithms

𝑐1:

𝑣2:

𝑡𝑐1: takesCourse

𝑡𝑐2: takesCourse
YEAR

value: 1994

STRING

value: 05-05

𝑣3:

𝑣4:

𝑑2: dob

𝑑1: dob

Property Graph

S3PG: Data Transformation

Standardized SHACL Shapes-based PG transformation (S3PG)

S3PG Schema & Data Transformation by ExampleInteroperability in Knowledge Graphs

Interoperability between RDF & PG 
models remains unresolved [1] 

Losslessness 
Naive mappings drop data or schema constraints
Up to 70% loss of query results!

Monotonicity 
Existing non-monotonic  methods require 
rebuilding the entire graph from scratch whenever 
the data changes. 

Two main limitations in existing approaches [2,3,4,5,6]

Goal: 
Lossless, schema-aware transformation 
of RDF graph data into property graph 
data.

Challenges: 
Structural mismatch, heterogenous 
property types, integrity constraints, 
scalability, evolving data

PG-Schema [8] enforcing 
constraints on property graphs 
via PG-Types and PG-Keys

Machine
Ubuntu 18.04, 16 cores,  
1TB HDD, 256GB RAM

Datasets 
DBpedia 2020: 52 Million Triples
DBpedia 2022: 333 Million Triples
Bio2RDF CT: 132 Million Triples

Comparison to
• NeoSemantics [6]

• Rdf2pg [2]

as existing state-of-the-art
transformation approaches 

Evaluation metrics
• Transformation time
• Accuracy analysis
• Query runtime – each query 

10x, 1000 warmup queries

1. Transformation (T) & Loading (L) Time Analysis

m: minutes, h: hours

2. Query Runtime Analysis on DBpedia2022 for Multi 
Type Heterogenous (Literals & Non-Literals) Queries

3. Accuracy Analysis in Percentages for RDF & PG

Experimental EvaluationTransformation Properties [9]

1. Information Preservation
2. Semantics Preservation
3. Query Preservation
4. Monotonicity

S3PG in a Nutshell: Schema Data 

S3PG  is 30-70% 
faster

MT: Multi Type, L: Literal, NL: Non-literal

An RDF graph is a set of  (s,p,o) triples, each consisting 
of a subject, predicate, and object.

SHACL (Shapes Constraint Language) is a W3C standard 
for validating RDF graphs by defining rules and 
constraints, called shapes, that data must conform to.

A property graph is a directed, labelled multigraph 
where both nodes and edges can have associated key-
value properties and nodes can have one or more labels.

Schema Transformation Phase (SHACL ⇒ PG-Schema)
Each NodeShape becomes a PG-Schema node type with the same 
label(s) and inheritance hierarchy, while every PropertyShape is 
translated into either
 (i) a property key on that node type (for single-valued literals), or 
(ii) an edge type that records source/target node types, allowed 
datatypes, and min/max cardinalities. 
Union value types, list constraints, and mandatory properties are 
captured verbatim, yielding a stand-alone PG-Schema that mirrors 
all SHACL semantics.

Data-Transformation Phase (RDF Triples ⇒ Property Graph)
S3PG reads through the RDF triples only once. 
For every resource, it creates a single node, aggregating all rdf:type 
triples into multi-labels. 
Non-type triples are processed as follows: 
if the object is another resource, an edge of the predicate’s label is 
added; 
if the object is a literal, S3PG either stores it as an inline property or, 
when the schema allows heterogeneous or multi-valued data, as a 
dedicated value node linked by an edge. 
Cardinality and datatype rules are enforced on the fly,
Inserts or deletes can be replayed incrementally, ensuring the 
property graph remains a monotonic, lossless reflection of its 
evolving RDF source.
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