
This research was partially funded by the Independent Research Fund Denmark (DFF) under grant
agreement no. DFF-8048-00051B, Agence Nationale de la Recherche VeriGraph (ANR-21- CE48-0015), and
the Poul Due Jensens Fond (Grundfos Foundation).

Transforming RDF Graphs to Property Graphs using Standardized Schemas
In Proceedings of the ACM on Management of Data, Volume 2, Issue 6, Article No. 242, Pages 1 - 25

Transforming RDF Graphs to Property Graphs using
Standardized Schemas
Kashif Rabbani, Matteo Lissandrini, Angela Bonifati, Katja Hose

You can automatically convert
your RDF graph to a property

graph without losing any data or
breaking any constraints!

A lossless, schema-aware, fully monotonic transformation called
S3PG converts SHACL-constrained RDF data into property graphs,
preserving every fact and constraint.

• How to map RDF triples — including mixed literal/resource values
into a property graph data model without losing information?

• How to ensure complete query equivalence by carrying SHACL
cardinalities, datatypes, and hierarchies over to PG-Schema?

• How to keep the target graph incrementally updated in a
monotonic way, avoiding costly full reloads as the KG evolves?

Schema Transformation

Data Transformation

SHACL[7]

RDF Graph
PG-Schema[8]

Property Graph

1. Angles, Renzo, Harsh Thakkar, and Dominik Tomaszuk. “RDF and Property Graphs Interoperability: Status and Issues” AMW (2019).
2. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “Mapping RDF Databases to Property Graph Databases” IEEE Access 8 (2020), 86091-86110.
3. Hirokazu Chiba, Ryota Yamanaka, and Shota Matsumoto. “G2GML: Graph to graph mapping language for bridging RDF and property graphs” ISWC (2020), 160-175.
4. E. Haihong, Penghao Han, and Meina Song. “Transforming RDF to Property Graph in Hugegraph” ICEMIS (2020), 1-6.
5. Davide Di Pierro, Stefano Ferilli, and Domenico Redavid. “LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends” Information 14(3), 154 (2023).
6. Neo4j. “neosemantics (n10s): Neo4j RDF & Semantics toolkit” https://neo4j.com/labs/neosemantics/
7. SHACL W3C Schema. https://www.w3.org/TR/shacl/
8. Angles, R., Bonifati, A., Dumbrava, S., Fletcher, G., Green, A., Hidders, J., ... & Zivkovic, D. “PG-Schema: Schemas for property graphs” SIGMOD (2023), 1-25.
9. Sequeda, Juan F., Marcelo Arenas, and Daniel P. Miranker. “On directly mapping relational databases to RDF and OWL” World Wide Web (2012), 649-658.
10. Kashif Rabbani, Matteo Lissandrini, Katja Hose. “Extraction of Validating Shapes from very large Knowledge Graphs” PVLDB (2023), 1023-1032.

: bob

:GradStudent

:DB

:GradCourse

:name

Bobstring

1994gYear :dob

05-05string

:dob

Algorithms string

:takesCourse

:takesCourse

:Student:Person

a

a
a

:Coursea
a

Databasesstring

a = rdf:type , rdfs:subClassOf

Legend

:name

RDF Graph

BS12string

:regNo :Student
:regNo★ xsd:string [1..1]

:GradStudent

:Person

:name ★ xsd:string [1..1]
 :dob ★ xsd: gYear |
 xsd: string |

:Course
:name ★ xsd:string [1..1]

:GradCourse

:takesCourse⌾ [1.. *]:takesCourse★ xsd:string [1..*]

sh:node,
 ★ sh:Literal,

 ⌾ sh:IRI

Legend

SHACL Shapes Graph

Student

Grad
Student

Person

Course

Grad
Course

inheritanceLegend

name STRING

regNo STRING

name STRING
takesCourse

[1.. *]

YEARSTRING

dob
[1..1]

takesCourse

PG-Schema

S3PG: Schema
Transformation

Person
 Student
 GS
name: ‘Bob’

 regNo: ‘BS12’
 iri : ‘…’

𝑠1:

Course
 GC
name: Databases

 iri : ‘…’

STRING

value: Algorithms

𝑐1:

𝑣2:

𝑡𝑐1: takesCourse

𝑡𝑐2: takesCourse
YEAR

value: 1994

STRING

value: 05-05

𝑣3:

𝑣4:

𝑑2: dob

𝑑1: dob

Property Graph

S3PG: Data Transformation

Standardized SHACL Shapes-based PG transformation (S3PG)

S3PG Schema & Data Transformation by ExampleInteroperability in Knowledge Graphs

Interoperability between RDF & PG
models remains unresolved [1]

Losslessness
Naive mappings drop data or schema constraints
Up to 70% loss of query results!

Monotonicity
Existing non-monotonic methods require
rebuilding the entire graph from scratch whenever
the data changes.

Two main limitations in existing approaches [2,3,4,5,6]

Goal:
Lossless, schema-aware transformation
of RDF graph data into property graph
data.

Challenges:
Structural mismatch, heterogenous
property types, integrity constraints,
scalability, evolving data

PG-Schema [8] enforcing
constraints on property graphs
via PG-Types and PG-Keys

Machine
Ubuntu 18.04, 16 cores,
1TB HDD, 256GB RAM

Datasets
DBpedia 2020: 52 Million Triples
DBpedia 2022: 333 Million Triples
Bio2RDF CT: 132 Million Triples

Comparison to
• NeoSemantics [6]

• Rdf2pg [2]

as existing state-of-the-art
transformation approaches

Evaluation metrics
• Transformation time
• Accuracy analysis
• Query runtime – each query

10x, 1000 warmup queries

1. Transformation (T) & Loading (L) Time Analysis

m: minutes, h: hours

2. Query Runtime Analysis on DBpedia2022 for Multi
Type Heterogenous (Literals & Non-Literals) Queries

3. Accuracy Analysis in Percentages for RDF & PG

Experimental EvaluationTransformation Properties [9]

1. Information Preservation
2. Semantics Preservation
3. Query Preservation
4. Monotonicity

S3PG in a Nutshell: Schema Data

S3PG is 30-70%
faster

MT: Multi Type, L: Literal, NL: Non-literal

An RDF graph is a set of (s,p,o) triples, each consisting
of a subject, predicate, and object.

SHACL (Shapes Constraint Language) is a W3C standard
for validating RDF graphs by defining rules and
constraints, called shapes, that data must conform to.

A property graph is a directed, labelled multigraph
where both nodes and edges can have associated key-
value properties and nodes can have one or more labels.

Schema Transformation Phase (SHACL ⇒ PG-Schema)
Each NodeShape becomes a PG-Schema node type with the same
label(s) and inheritance hierarchy, while every PropertyShape is
translated into either
 (i) a property key on that node type (for single-valued literals), or
(ii) an edge type that records source/target node types, allowed
datatypes, and min/max cardinalities.
Union value types, list constraints, and mandatory properties are
captured verbatim, yielding a stand-alone PG-Schema that mirrors
all SHACL semantics.

Data-Transformation Phase (RDF Triples ⇒ Property Graph)
S3PG reads through the RDF triples only once.
For every resource, it creates a single node, aggregating all rdf:type
triples into multi-labels.
Non-type triples are processed as follows:
if the object is another resource, an edge of the predicate’s label is
added;
if the object is a literal, S3PG either stores it as an inline property or,
when the schema allows heterogeneous or multi-valued data, as a
dedicated value node linked by an edge.
Cardinality and datatype rules are enforced on the fly,
Inserts or deletes can be replayed incrementally, ensuring the
property graph remains a monotonic, lossless reflection of its
evolving RDF source.

	Slide 1

